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Abstract 

This paper presents the general solution of the least-squares approximation of the frequency characteristic of the 
data window by linear functions combined with zero padding technique. The approximation characteristic can be 
discontinuous or continuous, what depends on the value of one approximation parameter. The approximation 
solution has an analytical form and therefore the results have universal character. The paper presents derived 
formulas, analysis of approximation accuracy, the exemplary characteristics and conclusions, which confirm 
high accuracy of the approximation. The presented solution is applicable to estimating methods, like the LIDFT 
method, visualizations, etc.  
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1. Introduction 

 
The least-squares approximation of the data window frequency characteristics with 

appropriate linear functions is used in the linear interpolation of the discrete Fourier transform 
(LIDFT) [1-3] and the zero padding can also be used with this approximation to increase 
approximation accuracy [4]. Linear approximation of the spectrum allows for linearizing 
relationships to determine component frequencies and this feature of the LIDFT method 
differs it from other methods of signal estimation [5-13]. 

The piece-wise linear DFT approximation is used in [14] but in the simple form, not by 
least squares method. In the methods described in [1-4] the approximation function is 
discontinuous, which can be inadvisable in some applications.  

The paper removes discontinuity from the approximation function and is organized as 
follows. Symbols and basic equations are defined in Section 2. In section 3 the approximation 
from [4], with zero padding technique, is presented in more general form than in previous 
papers [1-4]. Afterwards the alternative approximation is analysed in Section 4. Section 5 
describes how the formulas for continuous approximation function are obtained and Section 6 
presents the exemplary characteristics for a triangle data window. 

 
2. The data window frequency characteristic 
 

The data window frequency characteristic W(λ) is given by equation: 
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where: λ = fNT is the normalized frequency (in [bins]), f is the frequency in [Hz], T is the 
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sampling period, N is the length of data window, which is defined by values wn and n0 denotes 
the first value of the sample index. Most often n0 = 0, what gives the discrete-time Fourier 
transform (DtFT) of the data window or n0 = −N/2 what gives shifted DtFT of the data 
window. In this paper the shifted DtFT is used (n0 = −N/2) because for a symmetric data 
window, the W(λ) has only real values. The non-shifted standard DtFT is obtained from W(λ) 
for n0 = −N/2 (and vice-versa) by simple formula: 
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The zero padding technique involves computing (2) for the M-element series 
{w−N /2, …, wN /2−1, 0, …, 0}NR instead of the series {w−N /2, …, wN /2−1}N. Such a “R-times” 
zero padding technique (where M = NR) takes the following form from (2): 
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The values W(λ /R) for integer values of λ are easy to obtain by using the FFT algorithm 
and (2)-(3): 

 NRnk
Rkj

N

Nn

Mnkj
n weew }{FFT/

12/

2/

/2 π
−

−=

π− =∑ , (4) 

where: {wn}NR is the zero padded data window: 

 }}0,...,0{,}{{}{ )1( −= RNNnNRn ww  (5) 

and M = NR is the natural power of 2 for radix-2 FFT algorithm. 
The window spectrum W(λ) defined by (2) is approximated in the LIDFT method by 

function )(ˆ λW  and in the least squares method the quality of this approximation is given by 
the mean square approximation error Q: 
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This error has a different form in Sections 3-5, what gives different formulas for the 
parameters of the function )(ˆ λW . 

 
3. The approximation by linear functions used in the LIDFT method 
 

For data window and the zero padding technique, the LIDFT method assumes an 
approximation of the frequency characteristic W(λ) from (2) using linear functions, as shown 
in Fig. 1a [4]. The linear functions kkk baW += λλ)(ˆ  approximate the window characteristic 
W(λ) for λ ∈ [k/R, (k+1)/R]. The error Q from (6) is defined as: 
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and is described in the matrix form (on the base of (A7) of Appendix A) by: 

 AczAzcAccwwAzzzcAzcww HHHTHHT )()( −−+⋅=−−−+⋅= NNQ , (8) 
where: 
 T
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The coefficients kz′ , kz′′  from (15)-(16) are given, by use of (2), as: 
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The integrals in (17) are given by: 
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where: 

 
M

n
xn

π= ,      NRM = ,      12/,...,2/ −−= NNn , (20) 

 
n

n
n x

x
x

sinsinc = ,      
n

nnn

n

n
n x

xxx

dx

xd
x

/)(sincos)sinc(sinc' −== . (21) 

Taking into account (17)-(21), the matrices (15)-(16) are given by: 

 wWz ′⋅=′ −
RR 1 ,      wWz ′′⋅=′′ −

RR 1 , (22) 
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Let us notice that: 
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From (24) the matrix z  (14) is given by: 
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The task of determining the coefficients ak, bk of the approximating linear functions that 
minimize Q defined by (8) can be replaced by an equivalent task of determining the 
coefficients kc′ , kc ′′  from (12)-(13). They are obtained from: 

 0zcA
c

=−= )(2
d

dQ , (28) 

which gives: 
 zc =  (29) 

and then Q has minimum value determined on the basis of (8) and (29): 
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From (10), (24)-(27) the expression zHAz from (30) is given by: 
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and then (30) has the following form: 
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Let us define the vectors d′  and d ′′  and coefficients kd′ , kd ′′ , based on the values of 

approximating function )(ˆ λkW  for λ = k/R, (k+1/2)/R, (k+1)/R (two extreme values and the 
median value of the range [k/R, (k+1)/R]) as follows: 
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Using (11)−(13) they  can be described as: 

 c
I0

0I
ddd ⋅









⋅
=′′′=

6
][ TTT R  (35) 

and taking into account (27), (29) one has: 
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or in non-matrix form by: 
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The coefficients kd′ , kd ′′  can be calculated by FFT from (4). 
The equations (36)-(38) allow the calculation of the parameters kd′ , kd ′′  of approximating 

linear functions, and hence their coefficients ak, bk can be calculated. The graphical 
interpretation of kd′ , kd ′′  is shown in Fig. 1b. 
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Fig. 1. Approximation of data window spectrum by linear functions: a,b) in Section 3; c,d) in Section 4 

 
4. Alternative approximation by linear functions 
 

The approximation alternative to the presented in Section 3 is defined by kkk bλa(λW +=)ˆ  
for λ ∈ [(k−0.5)/R, (k+0.5)/R] (Fig. 1c). The mean square error Q of such approximation is 
different from (7), i.e. it has a different range of integration: 
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and, on the basis of (A10) of Appendix A, is equal (8) where matrices w , A , c , c ′′ , z  are 
defined by (9)-(11), (13)-(14), and c′ , z′ , z ′′  are defined by: 
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After taking into account (2), the coefficients kz′ , kz′′  from (41)-(42) can be written as: 
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The integrals in both of these dependencies are given by: 
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where: xn, sinc xn, sinc′xn are defined by (20)-(21). 
The matrices (41)-(42) can be written as in (22), i.e. wWz ′⋅=′ −

RR 1 , wWz ′′⋅=′′ −
RR 1 , 
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where RW  is defined by (23), and vectors w′ , w ′′  are defined as: 
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The task of determining the coefficients ka , kb  ( kc′ , kc ′′ ) of the approximating linear 
functions that minimize Q  defined by (39) is obtained by using equations (28)-(29), and 
similar transformations as in (30)-(31) give the same result for the mean square error of 
alternative approximation as the (32). 

By defining the vectors d′  and d ′′  with coefficients kd′ , kd ′′ , based on the values of 

approximating function )(ˆ λkW  for λ = (k−1/2)/R, k/R, (k+1/2)/R (two extreme values and the 
median value of the range [(k−1/2)/R, (k+1/2)/R]) as follows: 
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it is possible, after taking into account (11), (13), (40), (45)-(46), to express them in the 
matrix form (35)-(36) or in the non-matrix form by: 
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The coefficients kd′ , kd ′′  can be calculated by FFT from (4). 
The equations (49)-(50) allow the calculation of the parameters kd′ , kd ′′  of approximating 

linear functions, and hence their coefficients ak, bk can be calculated. The graphical 
interpretation of kd′ , kd ′′  is shown in Fig. 1d. 

Both approximations from the Sections 3 and 4 shown in Figure 1 are discontinuous, 
which may be disadvantageous in some applications. Their modification presented in the next 
Section, minimizes this discontinuity. 
 
5. Reduction of approximation discontinuity 
 

There is a natural question whether it is possible to eliminate or at least reduce the 
approximation discontinuity at points of transition to the next line fitting (Fig. 1). To this aim, 
it is possible to minimize the error (7) taking into account, with the weight µ , an additional 
component which is the mean square error of discontinuity: 
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or in the same way for the error (39): 
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In both cases (based on equation (A12) of Appendix A), the 1Q  is given by: 
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where: Q , w , A  are defined by (8)-(10) and c , z  are defined by (11)-(16) for the 
approximation from Section 3 and by (11), (13)-(14), (40)-(42) for the approximation from 
Section 4 and, additionally, the matrix E  is a circulant matrix defined as: 
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Minimization of error (53) is achieved for the condition: 
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or by: 
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where: ][ /2 Mnkje π−=W  is a MM ×  matrix ( 12/,...,2/, −−= MMkn ), and matrices 
][ AA nΛ=Λ , ][ BB nΛ=Λ  are M -element diagonal matrices with elements defined by: 
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with the range 12/,...,2/ −−= MMn . 
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Using (27) in (60) and the fact that [ ]TH 0I0WW NNR M ×⋅=  we have: 
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, (63) 

where: ][ AA nΛ=′Λ , ][ BB nΛ=′Λ  are N -element diagonal matrices with elements defined by 
(61)-(62) for the range 12/,...,2/ −−= NNn , and vectors w′ , w ′′  are defined by (24)-(25) 
for the approximation from Section 3 and by (45)-(46) for the approximation from Section 4. 
Equation (63) can be transformed, using (61)-(62) and dependences for w′ , w ′′ , to the form: 
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where: w  is the vector of the data window, diagonal matrices αΛ , βΛ   are defined for the 

approximation from Section 3 as ][ njx
ne

−= ααΛ , ][ njx
nej −= ββΛ  and for the approximation 

from Section 4 as ][ nαα =Λ , ][ nj ββ =Λ  with the coefficients nα , nβ  defined by: 
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Taking into account (64) and definitions αΛ , βΛ , (35) has the form: 
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or in the non-matrix form, from (33)-(34) for the approximation from Section 3: 
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and similarly, from (47)-(48) for the approximation from Section 4: 
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For 0=µ  the Eqs. (67)-(68) are identical with (37)-(38), and (69)-(70) are identical with 
(49)-(50).  

Let us notice that for 0=µ  (64) is the same as (27), i.e. )0( == µcz . From this fact and 
from (64) the expression )()( H zcAzc −−  is determined. Using additional relations (30)-(31) 
the total mean square error Q  of approximation defined by (7)-(8) or (39) is obtained: 

 ∑
−

−=

⋅=
12/

2/

2)(),(
N

Nn
nn wcNRQ µµ , (71) 

where: 
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 2222 )]0()([
12
1)]0()([)0(

12
1)0(1),( nnnnnnn Rc βµβαµαβαµ −+−+−−= . (72) 

For 0=µ  the Eqs (71)-(72) are the same as (32). 
The Maclaurin series of the cn(µ) for µ = 0 and µ → ∞ are described by: 
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3274425
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45
)( 12
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n xo
xxxx

c ++++=∞→µ . (74) 

These series and (20) show that for high values of R, the Q(µ → ∞) → Q(µ = 0), what is 
also confirmed by Fig. 2 and the figures presented in Section 6. 
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Fig. 2. Values of R4cn(µ) versus n as obtained from (72) 

 
6. Exemplary approximations for triangle window 

 
The conclusions obtained at the end of Section 5 and in Fig. 2 are confirmed for the case of 

calculation of (71) for the triangle window – the mean square error Q(µ, R) is proportional to 
R−4: when R is doubled, the value cn(µ) to decrease 16-fold (Fig. 2 and (71)-(72)), which 
results in the 16-fold reduction of the mean square error Q(µ, R), as is shown in Fig. 3a,b, 
especially for big R. The value of the Q(µ, R) depends also on the value of parameter µ – for 
small R this dependence is significant, but the higher the value R, the dependence on µ  is 
lesser (Fig. 2, 3a,b). The influence of the value µ  is clearly shown in Fig. 3c in circle zooms – 
for µ = 0 the discontinuity of the approximation is the largest at analyzed point λ = 0.75 bins 
(although the mean square error Q has a minimum, as shown in Fig. 3a,b), for µ = 0.1 this 
discontinuity is more then twice smaller (but the Q is increased), and for µ → ∞ 
approximation is continuous (but the error Q is significantly larger for small R, as shown in 
Fig. 3b). The cases for the triangle window, µ = 0 and R = 2 are also shown in Fig. 1. 

For the data window, the most important feature is its frequency characteristics |W(λ)|. 
This characteristic is completed by a graph of the frequency characteristic of the 
approximation error |)(ˆ)(| λλ WW −  (Fig. 4). For 2≥R  and triangle window, the envelope of 
this error is about (2.4R2)-times smaller than the envelope of the triangle window leakage 
(Fig. 4). The approximation error |)(ˆ)(| λλ WW −  is discontinuous for µ = 0 and continuous 
for µ → ∞. The differences in Fig. 4 are the most visible for small value of R, i.e. R = 2. 
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Fig. 3. The quality of approximation (example for a triangle window): a,b) dependence of the mean square error 

Q from µ and R in a graph R4N−2Q versus µ and R, c) different degree of the approximation discontinuity at a 
point λ = 0.75 bins magnified in three circle zooms for µ = 0, 0.1,  ∞ 
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Fig. 4. Graph of |)(| λW and |)(ˆ)(| λλ WW −  for a triangle window and µ = 0, 0.1,  ∞ 

 
7. Conclusions 

 
The main result of the paper are the Eqs. (65)-(70) for the parameters kd′ , kd ′′  of the 

approximating linear functions (and hence their coefficients ka , kb ) for the given value of the 
parameter µ , which defines the degree of the approximation discontinuity. The special cases 
are obtained for 0=µ  (largest discontinuity, smallest mean square error of approximation) 
and ∞→µ  (continuity approximation, largest mean square error). The values of coefficients 
of approximating linear functions are easy to calculate by FFT algorithm with the use of zero 
padding technique. The obtained formulas are valid for both kinds of approximation: when 
approximating linear functions are defined for the range ]/)1(,/[ RkRk +  bins (Fig. 1a,b), and 
for the range ]/)2/1(,/)2/1[( RkRk +−  bins (Fig. 1c,d). Results obtained in the paper are 
valid for any data window, not only symmetric like the triangle window used as an example, 
because all formulas are obtained without any assumption of this type. The formulas for 
parameters of approximating functions are given for the shifted DtFT, but it is possible to use 
them also for the non-shifted DtFT, by simple multiplication by the function )/exp( Rkjπ− , 
as follows from (2)-(4). 
 
Appendix A. Selected mathematical equations 
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Based on (2), (9) there is: 
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Based on (A1), (10)-(13) there is: 
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Based on (10)-(16) there is: 
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Based on (A3)-(A6) there is: 
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Based on (A2), (10)-(11), (13), (40) there is: 
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Based on (10)-(11), (13)-(14), (40)-(42) there is: 
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Based on (A3)-(A4), (A8)-(A9) there is: 
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For any T
12/2/ ],...,[ −−= MM xxx , T

12/2/ ],...,[ −−= MM yyy  meeting the condition kMk xx =+ , the 
matrix E  from (54) and identity matrix I , there is: 
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For any T
12/2/ ],...,[ −−= MM xxx , T

12/2/ ],...,[ −−= MM yyy  meeting the conditions kMk xx =+ , 

kMk yy =+ , TTT ][ yxz = , the matrix E  from (54) and identity matrix I , based on (A11), 
there is: 
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For diagonal matrices iΛ  ( 3,2,1=i ), orthogonal matrix W  meeting the condition 
IWWWW ⋅== MHH  there is for the following block matrices: 
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For the matrix ][ /2 Mnkje π−=W  ( 12/,...,2/, −−= MMkn ), matrix E  from (54) and 
diagonal matrix ][ /2 Mnj

e e π−=Λ  there is: 

 HWWΛE eM =⋅ ,      HT WWΛE ∗=⋅ eM ,       ][ /2 Mnj
e e π−=Λ . (A14) 
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For the matrices: E  from (A14), A  from (10) and identity matrix I  there is: 
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there is from (A13): 
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where: AΛ , BΛ  are defined by (61)-(62). 
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